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FOREWORD

In this report there are presented efficient methods for the computation of velocity
in the wave train of a point source. Part of the material in the report has been taken
from previous reports an” part has been developed in recent work. The report is
intended to provide a systematic coherent documentation for subroutines. The

manuscript was completed by 7 September 1977.

Released by:

‘a.mw-ﬂ-—v‘-—ﬂ-—"

Ralph A. Niemann
Head, Warfare Analysis Department
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ABSTRACT

The velocity potential and the components of velocity in the wave train of a point
source are derived from Havelock’s integral. Analysis and documentation are given for
the computation of velocity by trapezoidal integration, by asymptotic approximation,
and by integration by parts. Accuracy and efficiency are least dependent upon the
depth of the source in the integration by parts. The three methods of computation
are available for applications in a set of subroutines.
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* INTRODUCTION

In the computation of the flow around a ship, it is assumed usually that the fluid
is incompressible and irrotational. It is assumed that the Aluid is infinite in depth,
and that the free sur.ace can be represented by a linear approximation. In one method
for the computation of the flow around a ship, the product of source density at the
surface of the ship and the velocity of flow from a point source is integrated over the
surface of the ship.

The classical approach to a surface disturbance by Kelvin! was an application of
the= principle of stationary phase to a determination of the first term of an asymptotic -
expansion Consideration of the possibility of development into full expansions has
been made for the line of wave crests by Peters® and by Ursell®. Development of the
full asymptotic approximation has been compieted in the meantime!’. The utilization
of the asymptotic approximation is limited to the far field.

Fourier integrals for the velocity potential in the wave train of a point source have
been derived for infinite depth by Havelock® and for finite depth by Lunde® The
components of velocity are known also as the derivatives of Green's function as defined
by Wehausen®. j

The velocity in the flow from a point source is expressed as the sum of three terms. ;

The first term is the flow from the source in an unbounded fluid, the second term is
the flow from an image source above the free surface, and the third term is the flow
in the wave train. The third term often is expressed as the sum of a single integral
which represents a free wave, and a double integral which represents a bound wave.
The single integral by itself satisfier the linearized free—boundary conditions, while
the double integral combines with the first two terms to satisfy the linearized
free-boundary conditions. The amount by which the single integral should be added
can be determined by an analysis of the transient wave pattern of a source which
starts at zerc time and moves thereafter at a constant rate.

Components of velocity in physical space are derived from Fourier integration in
wave number space. Either Cartesian coordinates or polar coordinates may be used
in either space for the expression of functions. The usual choice is Cartesian coordinates
in physical space and polar coordinates in wave number space.

The single integral is just the contribution from integration on a small circle at a

singularity in the complex plane of the radial coordinate. The double integral is the
Cauchy principal value of an integral whose integrand is infinite at the singularity.
The single integral and the double integral can be combined into one complex integral
in the complex plane of the radial coordinate. The integrand of the complex integral
is analytic along the path of integration. it is necessary that the integrand be analytic,
because the integral is the steady state limit of the transient wave which has an
analytic integrand. It is not necessary to resort to ficticious frictions which have no
physical meaning in an inviscid fluid.

Wherever the integrand is analytic, then in accordance with the Cauchy theorem,
the path of integration may be deformed into any other path with the same limits of
integration. The path of integration with respect to either coordinate may be moved
. out into the complex plane for that coordinate. Complex paths have been proposed

several times in the literature”®. Many years ago it was recognized that radial
integration in wave number space is equivalent to the evaluation of the complex
exponential integral for which we have standard methods of computation.

1
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Lven after the radial integration in wave numbes space, there remains an azimuthal
integration in wave number space. The integrand is cyclical with respect to azimuth
angle, and the trapezoidal rule is the high accuracy rule for numerical quadrature,
The integrand is partly monotonic and partly oscillatory, and a large number of
intervals is required by the trapezoidal rule, unless the integration is for a position
in the neighborhood of the source.

A breakthrough was achieved when the quadrature was replaced with an integration
by parts right through any number of fluctuations of the integrand. Couvergent
approximation is used in connection with the integration by parts. The convergent
approximation iz useful for both the near fleld and the far field.

The evaluation of the Green function and its derivatives has received enough
attention in the literature to justily the release of formal subroutines for the
computation of velocity potential and the components of velocity in the wave train
of a point source. Such subroutines have been under development in this laboratory!®*-*?
for a number of years. The present report is a concise documentation of the assumptions
and the formulations which are basic to the subroutines Importani parts of the
documentation are data on accuracy and efficiency. ‘

"The specification of accuracy for a subroutine depends upon whether the subroutine

-is intended for a specific application or for general utilization. The level of accuracy

in the preseni project is eight decimal digits, while the computer essentially is a CDC
6€300. In single precision this computer operates on 48-bit numbers. Most computers
operate on numbers with a fixed number, of binary bits. A gauge of accuracy for
arithmetic operations is one unit in the lowest order bit. Larger errors accumulate
during the computation of a function. There is inherent error which arises from error
in the argument and there are lruncation eirors and rounding errors which arise
from inaccuracy of computation. A sensible policy is to keep the truncation errors
and the rounding errors to the same level as the inherent errors.

The absolute accuracy of a variable is expressed by the actual value of the error
in the variable, while the relative accuraacy of the variable is expressed by the ratio
between the value of the error and the value of the variable. Whether the specificalion
of accuracy can be a uniformn absclute error or a uniforin relative error depends upon
the nature of the function. A uniform absolute error iz appropriate for a periodic
function, but a uniform relative error is appropriate ior a monotonic function. For
more complicated functions the absolute error may be a constant fraction of a
reference function which matches the computed unction only at a limited number
of ntaxima. L

The number of cycles of a ¢computation loop intiuences the accuracy of computation.
The ioop may be terminated whei a sum becemes constant, when a preset tolerance
is met, or when s preset number of cycles have occurred. Ternzination for a constant

‘sum gives the full accuracy of the computer. but may require an expensive sensing

oporation. More economy is possible if a simple empirical formula can be used to
compute the number of cycles, but the derivalion of an vmpirical formula rmay require
a program of test runs on a computer.

In the computation of the components uf velocity the gauge of accuracy is the
squsare root of the sum of squares of the errors in the three componenats of velocity.
At small orders or arguments the error diminishes smoothly with order or argument
and is dominated by truncation error. At large ordera or arguments the errer fluctuates
with an amplitude independent of order or argument and is dominated by rounding
error. Transitions beiwesn modes of computation are designed so as to balance
truncation error against rounding error.




-

B
¢

T

Empirical curves have been constructed to express the error and the time for each
of three methods of computation. The curves can indicate only trends in error or
time because they are based upon actual runs on the CDC 8600 computer with time
st.aring and optimization. The error is subject to statistical fluctuations and the time
depends upon the presence of other jobs in the computer. Under the conditions of
the actual runs the cost of computation was 17¢ per second, but in other installations
the cost would differ in accordance with costing algorithms.

CARTESIAN COORDINATES

Various authors on ship hydrodynamics have used various coordinate systems. The
choice of coordinates for the present analysis is the standard coordinate system in
aeronautics and oceanography. The forward direction is the direction of motion of the
source through still fluid. The origin of coordinates is above the source at the
undisturbed surface of the fluid. The z—coordinate is the distance forward. the
y—coordinate is the distance to the right, and the z-coordinate is the distance
downward. The arrangement of the Cartesian coordinates is illustrated in Figure 1.

FREE SURFACE

In accordance with the usual assumption of incompressible, irrotational flow, the
velocity in the fluid is the negative gradient of a velocity potential which satisfies
Laplace's equation. Under steady state conditions the potential in the moving reference
frame is given by the expression

Uz + ¢(z. y. 2) (1)

where U’z is the potential for uniform flow in a direction opposite to the motion of
the source and ¢(z.y, z) is the potential for the local disturbance in the wave train.
The Cartesian components u, v, w of local velocity are given by the equations

Let the configuration of the {ree surface be axpressed by the equation

z+¢{zy)=0 (3)

For steady-state conditions the velocity at the free surface is tangent to the surface
and the potential obeys the boundary equation

de\ 0 dp 0 3
(U+_g)__{+_.‘e,_¢.+_(£= (4)
dz/3z 4dyady Oz
Neglect of terms of second order leads tc the boundary equation
a oy
— e e = O
Uaz oz )

A0
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The motion of the fluid is determined by the Bernoulli equation

{(ve32) + (3) + ()} - e

- + — —] +}|— - = 6

z%(” az) \ay az) ) o 9% L ©
where p is the density, p is the pressure, and g is the acceleration of gravity. At the

free surface the pressure is constant. Neglect of terms of second order leads Lo the
boundary equation

[ .
——— = 7
Uge t9¢=0 )

The free surface is eliminated from Equations (5) and (7) by differentiation to give
the equation

%y ay

—— — — 8
ozt "% 0 ®)

where «, is a critical wave number and is defined by the equation

(9)

IQ=L—/;

Along the centerline behind the source the wave length A of the transverse waves is
given by the equation

A= ._?lr (10)
g

Inasmuch as the velocity field is symmetric with respect to the z—axis, it is sufficient
to Ymit the analysis to positive values of y.

FOURIER ANALYSIS

The computation is founded on the assumption that velocity can be expressed by
a Fourier transform. The two-dimensional Fourier transform is given by the equations

Ala. B) = ;—:;; Jfr(z. y) e Ham+M) gz gy (11)

Flz.y) = “.A(a. B) e**=*M da dg (12)

where r, y are Cartesian coordinates in physical space, a, 8 are Cartesian coordinates
in wave number space, F(z.y) is a function in physical space, and 4(a. §) 1s the Fourier
amplitude in wave number space. A potential ¢(z.y. z) of a source distribution on the
plane z = h can be constructed with the equation

olz.y. 2) = ff“(a' 8) e-q.l‘pzl:—mu(-soh) da df 13)

which gives a solution of Laplace's equation wherever z # h. The vertical component

4
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of velocity at z = A is given by the equation
- %E -4 ff\/al + ﬂl A(a.ﬂ) 21(-””)(10 dﬂ (2 4’[) (14)

where the sign is plus if z> A and the sign is minus if 2 <h. In accordance with the
Gauss theorem the difference in ~ 3¢/3z on opposite sides of the plane z = h is 4no(z, y)
where o(z,y) is the surface source density at the plane. Thus the Fourier amplitude
for an arbitrary distribution of source density is given by the equation

1 ~as+
A(a,ﬁ)amffa(z.y)e Uas+Mv) gr dy (15)

For a unit source at the origin the Fourier amplitude is given just by the equation

i
Ala, B) = '2—"—'———— m (18}

The amplitude varies inversely as the radial distance in wave number space.
Let «, 8 be polar coordinates in wave number spuce. The coordinates are related by
the equations

a=kcosf B=xsiné (17)

The two-dimensiona! Fourier transform is given by the equations

Mx, 08) = 4_:;; ff F(I, .y) g -\s(sceateyaing) o dy (15)
Flz,y) = f ]‘A(x. 9) etxlzcostryain®) o g 49 (19)

For the unit source at the origin the Fourier amplitude is given by the equation
1
Alc, 8} = — 20
(<. 8) = 5— (20)
The potential ¢,(z.y, £) for the isolated unit source is given by the equation
- -
¢|(z' Y. z) - l J‘ f e-‘u—uéu(nen¢ynnt) dx d8 (21)
2r -w J0

The potential of the point source does not satisfy the free-boundary conditions. An
additional potential is added in order to meet the free—btoundary conditions. The
Fourier amplitude of the additional potential is given by the equation

1 (kg + £ cos?8)

A<, 8) = - 22
(x.9) 2nx (kg — « cos?8) (22)
The natural expansion into partial fractions is expressed by the equation
1 Kq
Al 0) = ~ — + - 23
(<.6) 2mx  me(xg — x cos?8) (3)

The first term of the expansion is the amplitude of a negative image source. The

5
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potential g,{z, vy, z) for the image source is given by the equation

73(3- v z) - - _21_ f“ J—‘-c(uh)ou(mnw-int) dx df (24)
" J-w [ ]

Thus the potential ¢ of the surface disturbance is given by the equation

o(z.y.2) = 9,(z.y.2) + 92z, y. 2) + 95(2. y. 2) {25)

where ¢, is the potential of the source in an unbounded fluid, ¢; is the potential of
an image source over the free surface, and ¢, is the potential of the surface wave
train.

The potential ¢, is given by the equation

1
P = i (26)
[z* +y* + (z - A)¥)2
Its derivatives are given by the equations
3
-2 z 3 (27)
TRyt (-0
3
_ 9 _ y 5 (28)
W eyt (z-m)
a ~-h
- F’_x = z 5 (29)
oyt (z-n)YE
which are used explicity in the computation of flow from the point source.
The potential ¢; is given by the equation
1
Pe = 1 (30)
P+ y*+ (z+ 0)%2
its derivatives are given by the equations
a
- “{3& == 2 3 (3
S EaR S e RN L
a
L Yy s (32)
W reyre (2o
3¢, z+h
az 3 (33)

{£2 + y* + (z + h)?}2

which are used explicitly in the computation of flow from the image source.

The Fourier analysis of the steady state gives only the Cauchy principal value of a
double integral. The full expression for the potential of the steady wave is derived in
Appendix A from the limit which is approached by a transient wave.

6
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The potential ¢, is given by the equation

N &g i}
i ¥ cosl0 -—2—(I+h)+*—z—(zuoc+yain0)
@z W, 2) = + Ky vos cas®e

. Icos’ae
< B e e-n(-+l\)+u(uou+unns)
. +py =2 f f 3= — dk df (34)
n Jox Jo Ko — kK cos*0
The integration can be simplifed through the subslitutions
6=a—;—‘s%—é{(z+h)—i(zcos6+ysin9)} (35) 5
and

cos®® (z+h)-i(rcos@ +ysind)

‘'where u is a new variable of integration. The function ¢~ itself satisfies both Laplace's
equation and the free—-surface boundary equation. it is added in just the right amnounti
to make the wave train trail behind the source if the path of integration with respect
to u proceeds along a straight line in the complex plane from u= -« toward the
origin, bypasses the origin on a half circle of small radius at the origin, and continues
on a straighi line to u = §. Whether Lhe half circle is on the right or on the left of
the origin depends upon the sign of cos¢. The path of integration in each case is
illustrated in Figure 2. The potential of the surface wave is given by the equation

=2 [T [0 (@)
valz, y, 2z)= — —_— f — du df a7
3 wJ_, cos®h L u
Ditferentiation of this potential requires the equation
d o[ e, 1t e
% ¢ f_~ " du = 3¢ L du (38)
which may be integrated by parts to give the equation
d 4 Al 8 “
Ec"f E—du-—-e“f i—idu (3v)
Y rey -
' The derivatives of ¢, are given by the equations
ﬁ 6973 .'Cq! +w 0—‘ J‘d <Y .
' e QP —= | —=d 6do
% 8x = _w costd J__ u? wucos (40)
’ \"W:c ~x02 +w G-‘ fd oY ‘ ) .’
i - om ——— - d 6 do 3
p , By i L eesd ) W u sin (41) A
H
f dpy kg [ @7 J“ M
- —— ~ du dfl
a2 n J_, costd J__ uf u (42)

complex conji, ates. The real parts of integrals froimn —n Lo +n are equal to twice the

b
b
When @ is replaced in the integrands by 8 x w the inteyrands are replaced by their
real parts of integrals from - {n to + {n.
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It is convenient to introduce new parameters u, w which are defined by the equations
a=—(z+h) w=zcosl+ysiné (43)
whence the parameter 8 is given by the equation

- s (a i) (44)

&~

The parameter § has always a positive real part, but it may have a positive or negative
imaginary part according to the value of 8.
It is vonvenient to introduce a new parameter { which is defined by the equation

t=tanéd (45)
The potential ¢, is given by Lhe equetion
2c [*° ,J“ -
M = — - _ 6
palz.y. 2) = = A dudt (46)
and the derivatives of ¢, are given by the equations
2 +o L] -
_%=_iﬁf V1+t* e"f f—,dudt (47)
Az ” —e- —- Y
2 2 pee — ¢ -
_;:a,_ifi;z L VT t‘e“f_-fu—.dudt (48)
..2!!: + _2_‘3: - {1 +¢%) ¢ 1‘:dudt (49)
az r J.o Ty

while the parameter 4 is given by the equation
8= - xgu(l + t¥) —ikg(x + yt)V1 + ¢2 (50)

If the coordinates A, z. y, 2 are scaled through multiplication by «, before computaticn,
then the analysis may be simplified to the case for which ¢y = 1.

COMPLEX PHASE
Stationary Phase
The complex phase § is given in terms of ¢ by the equation
8= ~pu(l+1t3)-i(z+yt)V1+ 62 (51)

There are two branches of the Riemann surface over the t-plane. The primary branch
contains the real axis, on which tl.e radical is positive. The secondary branch is reached
along any path which encircles vne of the branch points at :i. All members of the
equatior may be brought to the same side, and the expression so obtained may be
cleared of the radical through multiplication by the same expression with the sign of
the radical reversed. The result is the quartic equation

224 (u+8)%+ 2zyt + [z + 1+ 2u(u + )}t + 2zyt® + (yP + utt =0 (52)

There are four branches of the Riemrann surface over the §-plane.

8
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The complex phase § is stationary where t satisfies the equation

dé Ay + ot + 2yt?)
— =2yt~ —————" 0 = 53
& v YT (53)

The terms of the equation may be transposed and squared to clear the cquation of
the radical. The result is the quartic equation

Vit 2oyt + (28 4yt 4N+ daytd Ay udtt = 0 (54)

which has real coefficients and has two complex conjugate pairs of roots. One pair of
roots is associated with the primary branch and the other pair of roots is associated
with the secondary branch. The roots of the quartic equation could be found by the
Ferrari method, but better control over identification and accuracy is provided by
Newton—-Raphson iteration with the irrational equation.

The connection between the complex é-plane and the complex t—-plane is illustrated
by Figures 3 and 4. where solid lines are various branches of the real axis in the
t-plane, and dots and asterisks mark the points of stationary complex phase. In the
é-plane, the upper curve belongs to the primary branch, wiile the lower curve belongs
to the secondary branch. In the ¢-plane, the two lines which cross the imaginary axis
belong to the primary branch, while the two lines which hcnd back from the imaginary
axis belong to the secondary branch.

Initial Approximation

Solution of the Equatior dé/dt =0 is represented in an Argand disgram by the
vanishing of the sum of the three vectors

- 2uitV1 + t? zt 2y(3 + %) (55)

These vectors cannot have a zero sum for a real value of ¢ unless r and y both are
zero. The first and second vectors cannot be collinear unless ¢ is imaginary with
absolute value greater than 1, in which cace the third vector cannot be collinear with
the other two. The three vectors can have a vanishing combination only if the first
and third have components of opposite sign in the direction perpendicular to the
second vector The limit of possibility is where the second and third vectors are
collinear, in which case {* and § form two sides of a triangle while the third side lies
in the direction of t. The angle which t* makes with the real axis is equal to twice
that angle which t makes, eilher with the real axis, or with the side ;. The triangle
has two angles equal and is isosceles. The equal sides are % and . whence Lhe limiting
absolute value of ¢ is 1/V2. .

If the absolute value of ¢ is less than 1/\/5. then V1 + {2 deviates from the direction
of the real axis by at most %ﬂ\ The first vector {with negative u) lies to the left of
the direction of ¢, whereas the third vector (with positive y} lies on the positive real
side of the direction of ¢ The first and third vectors oppose each other only if the
imaginary part of t is positive. _

If the absolute value of ¢ is more than 1/Vv2, then V1 + 2 still lies on the positive
real side of the imaginary axis, provided the t-plane is cut outward along the imagina:y
axis from :i. The first vector still lies to the left of Lhe direction of ¢, but the third
vector now lies on the negative real side of the direction of {. The first and third
vectors oppose each other only if the imaginary part of ¢ is negative.

9
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It may be concluded that the equation dé/dt = 0 has only two primary roots, of
which one lies on the positive iinaginary side of the real axis inside a circle of radiue
l/\/é while the other lies on the negative imaginary side of the real axis outside a
circle of radius 1/v2.

In the limit when u =0 the equation dé/dt = 0 is simplified to the equation

1 z

—4+-—t+t¥8=0 58
2 2y (58)
The roots of this equation are given by the equations
-z -Vt ay? -z +Vrl- 8yt
= 22X TV t = =V (57)
4y 4y

Th. roots lie on the real axis when |x/> \/gﬁyl. while the roots lie on the circle of
radius 1,’\/6 when x| < \/Efyl,
In the limit when z = 0 the quartic equation is simplified to the equation

vl

Wy?+ uh)

The roots of this equation are ziven by the equations

+{3+t*=0 (58)

or by their complex conjugates. They are also the roots of the quadratic equation

1 ’
'z=y==+t X—-—F.—gsat*-tiﬂo (BO)
l+“l v'yl+“z

which is derived from the polynomial (¢t — ¢ )t - t,).
In the limit when y = 0 the quartic equation is simplified to the equation

(z* + 4u?)
Sttt =0
ant (61)
The roots of this equation are given by the equations
‘/'Z 4 2
t, =0 te=i— K (62)
2u

or by their complex conjugates. They are also Lthe roots of the quadratic equation
S —
— o= Vrt e qutt+tt=0 (63)
2u
which is derived from the polynormal (¢t - ¢, )t - ¢,).
In the limit when t + 0, th2 equation dé/dt = 0 is simplified to the equation

1 (ix+2u)

— 4+ t*=0

3 2y + (64)
which is derived from Equation (53) after neglect of the radical

10
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In the limit when { + » the equation dd/dt = 0 is simplified to the equation

1 xy-wirl |,
Rl SN odn /Y SPUFT JSNY, | 85
2 syt it (85)

which is derived from Equation (53) after the radical has been replaced by the limiting
approximation.

vl*‘i~*t(l*2~;5) (86)

The sign is ¥ according to whether the sign of z 13 2.
The three special Equations (56). (60). (63) may be derived from the general equation

1 (ud Tl 4 i T
ﬁlv +[_§Iy-t(#:#\/:z *“)4"!'. [1‘_ _‘y__________ ]‘_._tlno (87)
\/yl + “I y tu \ yl *_“l
which i* also compatible with the two limiting Equations (64), (65). The quadratic
Equation (67) is synthetic, but it gives the correct roots on the real axis, on the
imaginary axis, on the circle of radius 1/\«/2. and it gives good enough roots eisewhere
to serve as a good starting point for the Newtan-Rapheon iteration of the irrational
Equation (53).

TRAPEZOIDAL INTEGRATION

In the straightforward evaluation of the Fourier integrals, the radial integration is
expressed by the equation

e! r %‘: du = ¢ *Ei(4) (68)

for which Ei(8) is oblained by reference to a subroutine for the complex exponential
integral. The subroutine gives the integral along a path which does not cross the
positive real axis. A correction must be applied when the path of integration does
cross the positive real axis. The correction
+2vie? (69)

is applied when #m § > 0. The radial integration is performed at equal intervals of the
azimuth angle, and then the azimuthal integration is completed by application of a
rule of quadrature

In order to obtain information about amplitude and phase, the quadrature is applied
through half a cycle of the azimuth angle The real part 1s doubled and the imaginary
part 1s cancelled when the quadrature 1s continued through a full cycle of the azimuth
angle Diflerent quadrature rules are appropriate for the real part and the imaginary
part.

A function which is continuous and periodic can be expressed in terms of its
argument by a Fourier series. The coefficienls in an infinite series are derived from
integration of the products of the function and the sines or cosines of multiples of

11
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the argument. The coeflicients in a finite series are derived from s'immations of the
products of the function and the sines or cosines of multiples of equally spaced values
of the argument. Orthogonality of the trigonometric terms is true for all orders in
integration, but is not true for ail orders in summation. If there are N discrete values
of the argument then the summation of the products of sines or cosines 13 nonzero
for orders whose sum is a multiple of N Taus computed values of the coefficients for
the finite series differ from the true velues of coefficients for the infinite series as
the result of an aliasing of the trigonometric terms. The number of coefficients in the
finite series must be equal to the number of discrete arguments, and the terms of
the finite series with sines and cosines are of order not higher than N. The aliasing
error in the constant of the finite series is of order at least as high as N

All terms in either sertes except the constants vanish identically when either series
is integrated through one cycle. The constant in the finite series is derived from the
sum of the values of the function at the equally spaced values of the argument. Thus
the rule for Fourier integration with respect to a cyclical variable is just the trapezoidal
rule. An assessment of the accuracy of the trapezoidal rule requires an analysis of
the aliasing errors. In the present case of Fourier integration the coefficients of the
real part diminish aimost exponentially with increasing order. The error of integration
is determined almost entirely bv the aliased term of lowest order Because of the
rapid decrease 1n the coefficients with increasing order the trapezoidal rule is the
high accuracy rule for the real part. In the present case the coefficients of the
imaginary part diminish with order almost in accordance with a quadratic polynomial
in the reciprocal of the order. The aliasing error is half as large and reversed in sign
when the values of the argument are shifted to midpoints between arguments. Inasmuch
as the Simpson rule is equivalent to a superposition of two trapezoidal rules with
shifted arguments, the aliasing errors almost cancel. The Simpson rule is a high
accuracy rule for the imaginary part.

The accuracy of the integrations for the real part was confirmed by comparative
computations in which the number of intervals of trapezoidal integration was increased
in steps until the error was reduced to rounding erros. The determination of error
was repealed over enough coordinates in physical space to indicate the dependence
of error upon pusition. An empirical formula for the estimation of the number of
intervals for eight-digit accuracy is given by the equation

N IO |
%N:1+-27l +'—5 y
ikousi?

(7 + 549 + 7¢?) (70)

where the argument g is given by the equation

Yy
27+ y?

q= (71)

1
i‘u“;i\’

Inasmuch as the formula has only four variable terms. il can be made to satisfy a
specification of accuracy at only fcur points Almost everywhere else the level of
accuracy should be better than the specified level

The dependence cof the error and the time on position is illustrated by dashed
curves in Figures 5 and 6 Although the trapezoidal integration 1s not useful at small
depth, it does provide data for checkouts at moderate depth.
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; ASYMPTOTIC APPROXIMATION ‘
‘ Exponential Integral
If 18| is large throughout the integration with respect to 9, then the exponential
§ . integral is given by the asymptotic approximation
ﬁ ™ W 1]
g l"f —du~ Y = (rmd&s0} (72)
% .- U n=@ 4
t when the path of integration does not encircle the origin, but it is given by the
5 approximation -
ﬁ "f — du~ 6"" +2met (mé>0) (73)
when the path of integration does encircle the origin.
The terins with inverse powers of 4 are monotonic while the term with e~ is
osciliatory. The range of 8 over which the oscillatory term should be included requires
a determination of the value of 8 for which Jm § = 0. Insofar as the exponential integral
is an analytic function of 6, the path of integration in the §—plane may be deformed.
The point where the path of integration crosses the real axis may be displaced to a
remote position on the real axis where the oscillatory term is negligible. The oscillatory
term may be excluded for all # when x is positive. :
1 ]
Monotonic Terms ‘
The monctonic contribution to the potential ¢; is given by the approximation ;
n! [ cos**9d8 j
z Y 2)~~ 1 "—— ey 74 ;
. o= LT § e .

and the monotonic contributions to the derivatives of ¢, are given by the approximations

39, a7 [ cos®™'6d8 !
‘T*‘E.‘ RS Rrermisy %)
3¢, 21! [ cos™ 9 sin 6dg ﬁ

- —a—y— ~ ..z.:; -1 § (i + )™ (76} :
» - '

N T S iy Yo () |

dz nel n (“ + w)m :

The integrals of powers of u + iw are computed and are stored in an array. The powers
of cos @ are expressed in terms of powers of u + 1w. The results are combined to give :
the terms in the derivatives of ¢, !

Let r ¢ be polar coordinates in physical space. The coordinates are related by the
equations

. z=rcos¢ y=rsing¢ (78)
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Then u + iw is given by the equation
priw=g+ivzt+ytcos(d-¢) (79)

The integral of the reciprocal of u + iw is given by Formula 300 on page 41 of Peirce's
Table of Integrals'®. The basic integrals of powers of u + iw are given by the equations

1
E;§u-x (80)
\/:‘+y'§ @ Vzt+yt 1)
2n M+ Vetsyt+ ut

-A minus sign is required for the second integral because u is negative. Integrals of

higher and lower order can be generated through integration and differentiation.
Let the parameter u be defined by the equation

us= (82)

and let the integral /,(u} be defined by the equation

I(u)= 1 £ uri) 48 (83)

2t (gt ymi

If n is positive, the integrals are generated by the recurrence equation

0 (n even)

Tnc{(u)=(n+1) rl,.(t) dt + (84)
P arl

(~1) T (n+ 1)

eemE e
where the constant of integration is derived from the beta function, and is nonzero
only when n is odd. Each integral is represented by a power polynomial, for which the
polynomial of lowest degree is given by Equation (80). The polynomials are integrated
term by term with the aid nf Equation (3) in Appendix B. If n is negative, the integrals
are generated by the recurrence equation

Ines () = = 5 In(W) - (85)

Each integral is represented by the quotient between a power polynomial and a radical,
for which the quotient of highest degree is given by Equation (81). The quotients are
differentiated term by term with the aid of Equation (6) in Appendix B.
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The trigonometric functions of & are given by the identities

3in 8 = sin ¢ cos(@ ~ ¢) + cos ¢ sin(8 - @)
cos 8 = cos ¢ cos(d ~ ¢) — sin ¢ 8in(0 - ¢)
Let P.(0) and Q.(6) be functions such that
cos™@ = P,(8) + sin(8 - ¢)Q.(8)
The functions of lowest order are given by the equations
PolO) =1 Q(8)=0
In view of the equation
cos™*'@ = cos 8 [P,(8) + sin(8 - ¢)Q.(0)]
it follows that the functions are related by the recurrence equations
Poei(0) = cos ¢ cos(8 - )P, (8) — sin ¢ sin?(8 - ¢)Q.(8)
Que1(0) = — sin ¢ P.(8) + cos ¢ cos(8 —- ¢)Q.(8)

(88)
(87)

(88)

(89)

(90)

(81)
(92)

The functions P,(#) and Q,.(8) thus are constructed as power polynomials in cos(8 ~ ¢).

Let P,(68) and Q,(8) be functions such that
cos™@ sin 8 = P, (6) + sin(8 - ¢)Q,(8)
The functions of lowest order are given by the equations
Py(8) = sin ¢ cos(8 - ¢) Qu(0) = cos ¢
In view of the equation
cos™@ sin 8 = sin 8 {P,(8) + sin(t — ¢)Q,(8)}

it follows that the functions are related by the recurrence equations

P,(8) = sin ¢ cos(@ ~ ¢)P,(8) + cos ¢ sin*(0 — $)Q.(8)

Qn(8) = cos ¢ P.(8) + sin ¢ cos(8 ~ ¢)Q.(8)

(93)

(94)

(95)

(96)
(97)

The functions P,(8) and Q,(8) thus are constructed as power polynomials in cos(8 — ¢).

The trigonometric functions of 8 ~ ¢ are given by the equations

i =~ i+ w)
0-¢)=m
cos{8 - ¢) pew
R 2_ ) a2
sin}(g - ¢) = T~ Y *H Zzi:(it;lw) + (4 +iw)

(98)

(99)

Substitutions in the recurrence equations lead to the expression of the trigonometric

functions of 8 as power polynomials in u + iw.
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Oscillatory Terms
The oscillatory contribution to the potential ¢4 is given by the approximation
+ ™

PRERTE :)~4t'f e tdt (100)

for which
1 (101)

is a monotonic factor of the integrand, and the oscillatory contributions to the
derivatives of ¢, are given by the approximations

+®

-%?;!~4f Vi+ e et (102)
99, - T -4

-, t/1+tt e at (103)

4] -

e
.._aﬂ.,“f (1+1t% ¢*dt (104)

oz e

for which

Vi+tt V1 o+ ¢t 1+ ¢t (105)

are monotonic factors of the integrands.

Required for Taylor series expansions of the monotonic factors are derivatives which
can_be expressed as the quotients between power polynomials in { and powers of

1 + t*. The algorithm for generating successive derivatives of the quotients is given
by Equation (6) in Appendix B.

The series converge in the t—plane only within that circle which is centered at the
center of expansion and passes through the nearest singularity at +i. When each series
of limited convergence is multiplied by an exponential function of its argument and
the proauct is integrated from -« to +w«, the serizs becomes asymptotic.

Evaluation of the integrals can be completed if the variable ¢ is replaced by a new
variable u such that the parameter é is a polynomial of at most the third degree in
the variable u.

The parameter § and its derivatives are given in terms of ¢t by the equations

6 =—u(l+td)~i(z+yt)vVl + ¢t (1086)
ds8 {y + zt + 2yt?)

— = - 2ut - 107
% T YT (107)
dts + 3yt + 2yt?

F‘-Z‘L—i_——i——(: Y Y ) (108)
; (1+¢%)t
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The parameter 4 and ils derivatives are given in terms of u by the equitions

Squt . dy'ul

8 =4+ Su+ T T (169)
[T 3
%-a;+agu+93é‘7‘— (110)
dts
Joim 6+ S (111)

Equivalence of the expressicns defines a series expansion of t in terms of u provided
ds,/du = Q at the same value of 8 as dé/dt = 0. Otherwise dt/du would de infinite where
dd/dt = 0. The equation d8/dt =0 has roots where the vslues of { are ¢, and ¢, and
the values of § are 4, and 4,.

Near tl.e centerline behind the source the points of stationary phase are far apart.
The path of integration in the {—plane may be deformed to pass through the points
t, and ¢, of stationary phase. The contribution to integration is large near ¢, and ¢,,
and is small between ¢, and ¢,. Each integration from {, or {; to an intermediate point
may be approximated by an integration to 2.

The polynomial for 8 is simpliiied by setting &3’ = 0. The conventional substitution

Q
-y % (112)

eliminates also §;. The constant 4§, is given by the substitution

be 8 (113)
and the second coefficient §; is given by tne substitution
, d%
by ~ F {114)

for which ? has the values ¢, or ¢, wher» dé/dt = 0. The algorithm for converting the
variable of integration from ¢t to u is given by Equation (15) in Appendix B.
Integration of e~® with respect to u is given in terms of expounential functions by

the equation
. 4
f et dus(.‘?_f) e (115)
- 6ﬂ

Integration of the product of u and e™* iy zero by symmetry. Integration of the product
of a power of u and e¢~* is given by the recurrence

e a £ ]
J. uMefdu=-2— w2~ gy (118)
- ddy

or after iteration by the equation
1
b 2:.){z2mE
f u"‘e"du= _(__.)_(__’_r.).le % (117)
- 2mni(sy)""2
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Insofar as integration gives monotonic terms, summation can be continued until a
new term is larger than the preceding term.

Along the line of wave crests the points of stationary phase are close together. The
path of integralion in the t-plane may be deformed to pass midway between the
pointe ¢; and {, of stationary phase.

The quadratic term in the cubic polynomial can be eliminated by the conventional
transformation

é
u-u--—= (118)
L]
The variable u thus can be redefined so that §; = 0. Inasmuch as u is s new variable,
it may be scaled arbitrarily. Let it be scaled so that 43’ = —2¢. If the limits of integraticn
lie above the complex value

t)l+—‘£-.)-\-’-6—°-li (119)

then the real part of —4 goes to —e in the limit as N ~«. The integral of ¢~* with
respect to u is guaranteed Lo converge if the path of integration lies just above the
real axis.

The equation dé/du =0 is . mplified to the equation

ut = - 145 (120)

for whick the value of § is given by the expression
60 + Yitp)d (121)
The values of é, and §; are given in terms of the values of §, and 4, by the equations
8o = §(8, + 64) (122)
8 = - 41306, - )} (123)

The value of t for which 4 = §, is determined by Newion-Raphson iteration. The vaiue
of t at which the iteration is started is given by the approximation ¢~ (¢, +t;). The
algorithm for converting the variable .f integration from t to u is given by Equatien
(17) in Appendix B

Integration of ¢~
equation

¢ with respect to u is given in terms of Airy functions by the

f‘- e tdu= 21?0“°A1'.(1'.6§) (124)

-
Integration of the product of a power of v and ¢ is given by the equation
-+ - "
J- une~d du = 2me” O(—1)"4i™(iby) (125)
-

where Ail™(i8;) is the nth derivetive of 4i(ify). The algorithm for generating the
successive derivatives is given by Equations (26) and (27) in Appendix B.
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Inasmuch a= integration gives terms which alternate between two series of values,
summation is continued until a new term is larger than both of the two previous
terms or until the terms make no change in the sum. In a range of arguments the
terms increase st first before they decrease, nnd finally increase. In order to keep
the initial increase from triggering a premature terminatio. of the series, the first
. three terms are evaluated prior io the start of sensing for termination of the series.

Accuracy and Efficiency

Transition from the quadratic approximation to the cubic approximetion is placed
where the errors of computation are the same for both approximations. The cubin
approximation is used where the coordinates satisfy the inequality

| > Blyl (126)

Transition from truncetion error to rounding error occurs at a zriticel radius from
the source. The limiling radius for acceptable truncation ervor varies with direction.
The critical radius is given by the empirical equation

z

PR/ v .-rznzx;%—v; (127)

The rounding error for radii larger than the limiting radius also varies with direction.
The rounding error along the critical line of wave crests increases with decrease in
the depth below the free surface. The relstively large errors on the critical line are
attributed to the close approach to each other of the points of stationary phase. Thus
a perturbation of the position of the points of stationary phase casuses a significant
change in the error in velocity. The error is tolerated insofar as the asymptotic
approximation is faster than the integration by parts. Crrors and times are illustrated
by dotted curves in Figures 5 and 6.

INTEGRATION BY PARTS

Interpolation
In the integration with respect to ¢ the integrands are the products of the monotonic
factor
1 (128)
and the oscillatory factor
cu
e ! r — du (129)
e U
or the integrands are the products of the monotonic factors
v+t tvV1+tf 1+ (130)
- and the oscillatory factor ‘
e\l
et f Iy du (131)
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If the monotonic factors and the oscillatory factors are expressed in terms of a
common argument, then the integration can be completed through integrations by
parts. The parameter § is expressed by the equation

d=n+e¢ (132)

where 7 is & center of expansiun and ¢ is *ue common argument of the monotonic
factors and the oscillatory factors.
The real part of n always is positive. The real nart of n!/® always is negative, because
n is on the same branch of the Riemann surface as —=. The sign of ¢!/% is arbitrary.
The sign is adjusted so as to make the phase angie of €¢!/% equal to half the phase
angle of ¢.
_ Subtraction of n leads to the equation

e=—~(n+p)-ut®—ilz+yt)Vi + t? (133)
[ 4

and division by t* leads to the equation

€ +u z 1
-i’—“—-"—‘-- Y+ - 1+—i (134)
t t 4 t

Taylor series expansions express ¢ directly in terms of ¢, then transformations of
variable express t conversely in terms of €. The algorithms for the series expansions
and the trensformations of variable are the basis for a previous subroutine which has
been described in a previous report. This subroutine spent too much time in processing
the Taylor series expansions. A gain in speed by a factor of seven has been achieved
when the Taylor series expansions have been replaced by Lagrange interpoclation. The
algorithms for the Lagrange interpolation are the basis for the current subroutine
which is desrribed in the present report.

Series expansions of the monotonic factors are derived by Lagrange interpolation
between eleven discrete values of the monotonic factors. The discrete values are
computed at each discrete argument in a set whose spacing between arguments is
preportional to the spacing between the roots of a Chebyshev polynomial. The accuracy
of approximation between discrete arguments then tends to be uniform in accordance
with the Chebyshev criterion. Where the path of integration is curved, the spacing
along the curve is approximated by chords which span segments of the curve. The
range of approximation is determined by the configuration in the §—plane. while the
path of integration is specified iu the t{-plane. The position in the t-plene for a
specified chord in the é—plane is derived by Newton-Raphson iteration.

The natural path of integration is the real axis in the {—plane, but this path passes
between two singularities where d6/dt=0. Many intervals of integration would be
required in the vicinity of the singularities. These can be reduced tv a single interval
near the first singularity, and they can be reduced to fewer intervals near the second
singularity, if the path of integration is displaced to pass right through tie first
singularity. The integration is completed in a single final interval.
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In the integrations with respect to ¢ the monotonic factors are

. 1
3 (133) )
dt
. and
Vi+tt tV1+ 88 1+t%) 6
@ ~a Ta
at dt dt

Different expsnsions are required for each interval of integration.
In the firsi. interval of integration, the center of expansion n is located at that
value of § where t : ¢, and dé/dt = 0. The parameters

d
T (137) i ;
l and . . .
3 evi+ e Fiil'_l,_*_f fi( 1‘:,‘2)4 {138) : ’
) ds a8 a4 o
at at at

are computed for a discrete set of values of ¢!/2 Their limiting values at ¢ =0 are

1

—— (139)

v¥(a)

and i

v’th'Fl t,x/1_+?Fl L+49 (140) ’
a2y (22 (2

Expansion in series leads to the representation of the monotonic factors as ascending
series in powers of €¢''2 which begin with ¢ /%

In the continuation of integration, the center of expansion 7 is located at the center
of the ranga of approximation. The monotonic factors are expressed directly as series
in powers of e.

In the final interval of integration, the center of expamnsion 7 is located at that
value of § where dé,/dt =0 and 6 is nearest to + » The parameters

3
i 2
£ (141)

H hutcd
I dt
¢ and

1 .

e
+
-~
~
~
b
+
~
»n

(1+t%

(142)
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are cotputed for a discrete set of values of € /2 Their limiting values at ¢ = = are
. 1
: EX
. ‘ ‘ 2 i (143) 7
(-uwiy)?
» 1
+
(0] —-——i——-§ ——— (144)
(-u¥Fiy)* (-u¥wy)?
"where the i signs are determined according to whether the direction of integration
is + in the t—plane. Expansion in series leads to the representation of the monotonic
factors as descending series in powers of € !/ which begin with €*'/2.

The range of expansion of the Lagrange interpolation is subject to limitations which
are similar to the limitations on the range of expansion of the Taylor series. The
expansions are limited to the primary branch in the §-plane as long as the radius
of expansion is less than the distance from the ceater of expansion to the points
where éd =0 and ¢ = 1 i. The expansions are conv: .ont if the radius of expansion also

potse

[=%
5w atmcam bl 2 D i o Akl

.' is less than the distance from ihe centler i expausion to the nearest point in the i
“o . primary braach where dé/dt =0 Thec actual range of approximation is a fraction of j
- the radius of convergence. -The value of the fraction is determined by computation. y
o In the initial interval of integration the fraction for expansion in terms of €¢'/? is one .
half, in the continuation of integration the fraction for expansion in terms of € is two

{ thirds, and in the final interval of integiralioa the fraction for expansion in terms of A

j €12 ig one half. Boundaries of approximation and convergence are illustrated by i
dotted lines in Figures 3 and 4 for the initial interval of integration. .

During the stepping from one interval to the next interval the center of expansion 2

 { for the new interval is estimated on the assumption that the new interval is a linear 4
extension of the old interval. The position of the center of the new interval is estimated }

by an application of the cosine law to a triangle with vertices at the old center of
expansion, the nearest singularity, and the new center of expansion.

A
A

Recuisrence

The terms of the ascending series are integrated with the aid oi the recurrence
equation

' ' < i v el "c un , i Ad Q‘
St R ung —didu= du — ¢he~1t0 —dt '
, . |4 +u t

Q - 0 1’) —os
. C *u el
+n f yhle 7ty F - ot du (145)
o -
which is started with the aid of the special equations *
1
€ . —(g+u) +u Yy [} )
f Z — < dtdu=2¢"'f i,tun-‘(f) di (148)
d a ui ~ e t —e ti 4 -
O « ' ru it - t rHee ot ;
: f e~(n+w) f' 2 dtdu= log(l + 5) +em r S dt- e"""’J Sat (147 '
R . o -t _ n . t _—
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and with the aid of the recurrence equation

. ta ] C‘ u.-‘ .8 .l
.r utg (rew J" . dt du = ﬂf. du —~ ¢%e-l940) ta
] -t aNtu .-t
new of
. +n.ru"“¢""“"f 7 ddu (148)
[ ] --

which is started with the aid of the special 2quations
1

—{9+w) +u ¢ \i 2 2PV S e\ ¥
b ® atdu=-ZtanE) +2e0] Stan-S) at  (149)
i ' i B!
o o Jat n n .- ¢

+u _ ¢ [} +e 4
f ¢ 0o J-' %dt dusc'*'f -‘?dt - r"'"'r !t—dt (150)
. - - -

The recurrence is cycled in the reverse direction when le} 5 7.
Required for ascending series are integrals which are generated by the recurrence

Gl au Alh i il

equation
5 L » n-
f ha du=£—-—nr&-———-du (151)
aNtu n Jantu
i Tre recurrence is started with the special integrals
P i
- d t
= ‘r—,—-—'f-—— -2 tan'*(f) (152)
s *ul(n+u) nt 7
LR d
Lk f——"—-ﬂog(:«»i) (153)
sl e Mt u n
? The integrals are given by the series expansion
u" S (=0 reyt
! . du = ket — 4
L J:n+u u =1 E,n+k+1\n) (lel<inb) (154)

The recurrence (151) removes progressively the terms of lowest order from the
expansion, whence the residue does not retain the terms of highest order with enough
accuracy when 'ef << [nl.

> The expansion (154) is generated in the direction of descending order by the
% recurrence
% ¢ ynt 1fe™ < un
e f du = --[~— - . du] (155)
¥ o N+ u nln o N+u
!
‘\ which may be started with the limiting approximation
: ul e!ul
- du~ N~ 158
J:rwu N+1)n+e) W) (126)
In view of the convergence condition for the series expansion, the recurrence (155)
. can be used only when [¢] < in|.
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. equation
- * [
J—u«u-l.»hw)r“f_‘d‘d“-_‘.r u® du + .L'-‘.-('."r "_dg
. o L nj n+u ne - B
e nes *: F
! N .r "
nJ. . Jom ¢

which is started with the aid of the special equations

~{g+w) +u [
J- -'—-r 'Tdtdu-zr'r :{lan"(i) dt
. w -~ . ¢ €

~(new) et '
J.‘ ¢ r -‘—dtdu- e“'-r f—lo.(l+-‘—)dt
. © o ¢ P ¢ €

and with the aid of the recurrence equation
‘e _f
du+ —- e=0+0 r < at

+e 2 ~n-t
ru""c""‘"’f 2 dtdu=- f. u?
. o e M ne -
+u ]
- lf‘u-nc—hﬂslr !i dt du
n J, e b

which is started witk the aid of the special equations

+u ot 1 ‘e ot 1 *
J-u*r“*"‘r -‘-;dtdu-c‘c“"*"f '-dtn‘"r '-,mn-'(f) at
T - ‘ - t -am “ €

N‘l +e .l
J- et r — dt du = ¢~(1*9 f —dt
« -t P

gt 2 n\? ! e\
J— —_—— -r -—dtdu-s-—-,-tun"(—) +2¢7" —,tan“'(—) dt
< ui - . €

+u

-

PR

- t* ,,I -e 4 €
J—— g (v+w)
. 71

[""c‘ 1 n) ["’ et t
b =— = 2 - - -
- ‘gdtdu n108(1+e + e --tlog(1+e)dt

The recurrence is cycled in the reverse direction when ‘¢f 3 27.

The terms of the descending series are integrated with the aid of the recurrence

(157)

(158)

(159)

(160)

(181)

(162)

(183)

(164)

Required for descending series are integrals which are generated by the recurrence

equation

-n-1 - -n
[T
e NtY nine™ J n+u

The recurrence is started with the special integrals
du

¢ fué(,’ +u) i —ZT tan"(g)

nt

du_ 1 2)
fu(n+u) 1110'(“:
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The integrals are given by the series expansion i

fnw‘" ):Mk (i <le) (168)

The recurrence {185) removes progressively the terms of highest order from the
expansion, whence the residue does not retain the terms of lowest order with enough
accuracy when [nj << ¢}

The expansion (168) is generated in the direction of ascending order by the recurrence

- 1 -n-1 4
J-“ du.._.;-,,J-“ du (189) ;
« NtU ne « M+u

which may be started with the limiting approximation :
u v s 3

du~ Nso 170
I._n«w (N-1)(n+¢) ( ) (170) i

In view of the convergence condition for the series expansion, the recurrence (169)
can be used only when |n| < el §

The complex exponential integral
.!
e r 7 dt (171)

and the complex Fresnel integral

<! b
U"J::-J dt (172)

A
are obtained from subroutines®. It is necessary to apply corrections to bring the path i .
of integration below each singularity at ¢ = 0. The corrections are applied when g
mn>0 (173) 3
For the exponential integral the correction is
+2mie”™ (174) ]
but for the Fresnel intsgral the correction is é
r l. ;
~2vVrie ™ - 2¢7" — dt (175) H
-- i i
The logarithmic exponcntial integral i
& ' =3 ¢ 1
* e -‘:‘ : logl{1+ p dt (178) i
s and the arctangential Fresnel integral 3
' t\t i
. |4 tan“(-) dt (177) .
. 1] € ;
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are oblained from subroutines®. It is necessary to apply corrections to bring the path
of integration below each singularity at { = —¢. For the logarithmic exponential integral
the correction is

~¢ gt _ !
-2mie™™ -;-dt+2mc”' -‘-dt (178)

and for the arctangential Fresnel integral the correction is

-t 4
-ac"f -‘-{dt+nc"'.r Lid‘ 179)
- —.‘

In the evaluation of the ascending series the arctangential Fresnel integral is corrected
only when

Ree20 and Sme>0 or Ree<0 and m(u%)zo (130)
in the evaluation of the descending series the integrals are corrected only when
Ree>0 and Sme>0 (181)

When the differences are taken hetween values for the upper and lower limits of ¢ the
correction for the logarithmic exponeniial integral is reduced to

-8 .l
- Zﬂic"'f < at (182)
and the correction for the arctangential Fresnel integral is reduced to

~-e .l
- nc"’f —dt (183)
- tl

The arctangential Fresnel integral and the arccotangential Fresnel integral are rejnted
in accordance with the equation

- i ' ' i
."f ¢ tan-'(f) dt=1¢"'J‘ Ladt-em| & tan"(f) dt (184)
-.3 \t 2 .43 .- gE €

which is used in connection with the evalualion of the ascending series.

Accuracy and Efficiency

The integration by parts gives acceptable accuracy and efficiency everywhere. Errors
and times are illustrated by solid curves in Figures 5 and 8.
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PROGRAMMING

Trapezoidal integration for velocity potential is provided by Subroutines CKPSVP and
CEXPLI, while asymptotic approximation and integration by parts are provided by

SUBROUTINE PSWTVP (AK, AH, AX, AY, AZ, FP)
CEOSORIIISCOU SRS OPVE RS OPENCEOIOECEIBEPREOOPEPUNEPESRSIPRCEINAREPRONNPEROUERREeNsSROtRtnsS

FORTRAN SUBROUTINE FOR VELOCITY POTENTIAL OF POINT SOURCE

SECOREENTRICHOEOFUSASSISUEDBONSUNPNENIRIPESISEIPECESUUBIEROENIURSESISHSGEIINIISENOUIOSRIRIED

The critical wave number «, is given in argument AX, and the depth A of the source
is given in argument A4. The coordirates z.y, 2 of a point are given in arguments
AX, AY, AZ. The velocity potential ¢ is placed in function FP. Calls are made to auxiliary
subroutines which are listed in Table |

Trapezoidal integraticn for velocity field is provided by Subroutines CKPSVF and
CEXPD!, while azymptotic approximation and integration by parts are provided by

SUBROUTINE PSWTVE (AK, AH, AX, AY, AZ, FU, FV, FW)
PORPOLSHOEEOEE NG EHBEE RO CITRNEOSORSNEPSCHANNBISORRNSE NSRS SIENEIPNEEOPOOSUTIOESCORENesRedtey

FORTRAN SUBROUTINE FOR VELOCITY FIELD QOF POINT SOURCE

CEENEEEPIBOPNCEG ISP ENGONESUPEERS NS DU tREOEE IO SO It RIPSI SO PERC RSt eIEerOtsNessesdteotucy

The critical wave number «, is given in argument AK, and the depth A of the source
i given in argument AH. The coordinates z, y. z of a point aie given in arguments
AX, AY, AZ. The components u, v, w cf velocity are placed in functions FU, FV, FW. Calls
ace made to auxiliary subroutines which are listed in Table I

TABLE 1
AUXILIARY SUBROUTINES
Name Function
CICTRM . . ... .. ............. Performs complex vector-matrix multiplication.
CLGRNP . . . . . ... . Synthesizes complex Lagrangian polynomials.
CASSLK . . . .. ... ..., Computes the modified Bessel function of the second kind.
CLGMCI . . . . . ... Computes the complex logarithmic integral.
CEXPLI . . . . . ... Computes the romplex exponential integral.
CFRNLE . . . .. . . e Computes the complex Fresnel integral.
CEXEX1 . . .. ........... Computes the complex exponential exponential integral.
CEXFRI . . .. .. . .......... Computes the complex exponential Fresnel integral.
CLGEX) . . . . . . .. . Computes the logarithmic exponential integral.
CATFRI . . . . . . e Computes the arctangential fresnel integral.
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DISCUSSION

The fundamental formulation of the Green function can be trensformed into other
formulations in which the added Fourier integrals have various amplitudes. Methods
of evaluation by contour integration in the complex plane of a coordinate in wave
number space have been published in the literature. The final evaluation in each
method is an application of a quadrature rule to the azimuthal integration. Any
systematic quadrature rule other than the trapezoidai rule for equally spaced arguments
is equivalent to a combination of trapezoidal rules of reduced order. It can have
superior accuracy only by accident.

Radial integration along a comrlex path was suggested originally by Pond” in 1957,
and was programmed for computation by DiDonato” in 1858. In the DiDonato method,
the amplitude had its original form as expressed by the equat'sn

1 (g +« cos?s)

2nx (ko ~ x cos?d) (185)

Afx,.8) =
Radial integration was in the complex plane of the radial coordinate. Contour integration
and evaluation of the residue of a pole led to the sum of a single integral and a double
integral. The single integral had a variable upper limit. The radial integration was by
Simpson rule, and the azimuthal integration was by Gauss rule.
Radial integration along a complex path was suggested again by Smith, Giesing, and
Hess® in 19683, and by Webster® in 1969. it was programmed for computation by Adee®
in 1973. In the Adee method, thc amplitude is resolved as expressed by the equation

A(c,8) = — —— + ¥o

—— 8
2nx  nx(xy — x cos®s) (186)

The first term of the expansion is the amplitude of a negative image source. Radial
integration in wave number space was performed along a complex path where the
integrand is not oscillatory. Radial integration was by series expansion and Simpson
rule, then azimuthal integration was completed by Simpson rule. The radial integration
evaluated just the conventional exponential integral, and the azimuthal integration
was applied to the same integrand as in the case of the trapezoidal rule.

A formulation of the Green function has been given by Gadd!? in 1970. In the Gadd
method, the amplitude is resolved in accordance with the alternative equation

P
A(x.6)=+i+ cos’d

SO L A — 7
2nc  m(ky —« cos?@) (187)

The first term of the expansion is the amplitude of a positive image source. As k + »
in this method the integrand does not diminish as fast as in the conventional method.
If the source is close to the =.:rface, a large part of the integration is devoted to the
computation of twice the potential of the negative image. Slow convergence of the
integrand makes accurate evaluation difficult.

That radial integration evaluates an exponential integral was recognized®-*? in 1959.
The exponential integral was used in subroutines which were reported!® in 1965. That
direct evaluation of the exponential integral is more efficient than the conventional
radial integration was appreciated by Shen and Farell!! in 1975. In the Shen and Farell
method, the exponential integral is evaluated by reference to a subroutine. In the
azimuthal integration, the angle 8 is replaced by its tangent ¢{. The azimuthal integration
is completed by Simpson rule. The computer is required to halve the interval of
integration until the integral remains constant to within a tolerance. Except for a
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factor d6/dt, the integrand is the same as the integrand for the trapezoida! integration.

The integration in wave number space has been analysed in terms of Cartesian
coordinates by Andersson'®!? and by Noblesse'* in 1976. In the Noblesse method,
contour integration in the complex plane of the longitudinal Cartesian coordinate
leads to a resolution of the Green function into a monotonic term, which is symmetric
fore and aft, and an oscillatory term, which trails behind the source. The monotonic
term has an exponential integral in its integrand, but the argument of the exponential
integral is not the same as the conventional argument. The real part of the argument
changes sign but the imaginary part remains negative during azimuthal integration.
The argument of the exponential integral goes to zero at the limits of integration,
and the exponential integral presents there a pair of logarithmic singularities.
Subtraction of a logarithm from the integrand gives a function more suitable for
quadrature, then the logarithm is restored with analytic integration. The oscillatory
term is just twice the conventional single integral, and presents the same probliem of
evaluation. Although the sum of the monotonic term and the oscillatory term is
continuous, the individual terms have discontinuities in derivative at the transverse
plane through the source. They do not satisfy the {ree-surface boundary conditions
at this transverse plane.

An attempt to compare the present method with the various other methods has
been thwarted by an inability to make the programming of the other methods run
properly on the computer in this laboratory.

An eflort has been made to interpolate'® in a table of velocities. A table of 36900
entries was computed on the Naval Ordnance Research Calculator when that computer
was waiting to be demolished. The interpolation was founded on the assumption that
the velocities could be expressed as the product of a monotonic function and the
exponential function of a monotonic argument. This is true where the asymptotic
approximation is valid, but close to the source the divergent wave system and Lhe
transverse wave system are inextricably interiocked. Efforts to interpolate had only
indifferent success. In order o interpolate the table would have to be so large as to
be unwieldy. The three—way interpolation could be as costly as the direct evaluation.

Measurements of wave height of a Rankine ovoid®®"®’ confirm the validity of
computations of wave height by subroutine. The Rankine ovoid is that streamline which
is generated by a simple source and sink on a line parallel to the free stream. A model
of the Rankine ovoid has been towed in the model basin and wave heights have been
measured by Shafler® The measured wave heights agreed in phase with the computed
wave heights but were smaller in amplitude. The model was towed by a long stranded
cable, which undoubtedly set up a fullv turbulent boundary layer on the model.
Inasmuch as vorticity in the boundary layer would meet partially the boundary
conditions on the boundary of the ovoid, it was necessary for the source distribution
to meet only partially the boundary conditions. The agreement between measured and
computed wave heights is excellent in view of the experimental difficulties.

CONCLUSION

The trapezoidal integration is efficient in the near field of a deep source, but is
inefficient in the far field of a shallow source. The asymptotic approximation is efficient
far from the source. but is inaccurate along the critical line of wave crests. The
integration by parts is most uniformly accurate and efficient at all depths.
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TRANSIENT WAVE

In the analysis of a transient wave, the uniform motion of a source along a horizontal
line is simulated by a succession of pulses at equal intervals of distance and time.

Let r,y. 2.t be coordinates and time with origin of coordinates at the surface of
the fluid initially at rest. Let a fixed source be created at a distance A below the
origin. The velocity is the negative gradient - Vg of a velocity potential ¢, which is a
solution of Lap'ace’s equation. The dynamical equation is the compiete Bernoulli
equation,

4

.1} s
at + §(Vo) +p gz = constant (1)

where p is the density, p is the pressure, and g is the acceleration of gravily. Let the
surface of the fluid be given by the equation

s+¢(z,y.t)=0 (2)

where ¢ is the elevation of the surface. The linearized Bernoulli equation is
8¢
- — = 0 3‘
3t 14 (3)

at the free surface, and the kirematic equation is

8 2
-—— e — = 4
Bz+8t 0 )

Elimination of { from Equations (3) and (4) leads ts the boundary equation

3% B¢
2 95:7° ®

which must be satisfied by the transient potential.

At the instant of creation of the source the fluid is accelerated into motion. All
terms in the Bernoulli equation remain bounded at the free surface. If each term is
integrated with respect to time, then the term 3¢/3t becomes the change of potential,
but the other terms vanish. in the limit of instantaneous formation of the source,
the potential remains constant, and the boundary conditions require that the formation
of a source beneath the surface be accomparied by the formation of an iinage over
the surface.

The potential of the surface disturbance is given by the equation

oz, y.z. ) =@, (2. v, 2)+ ¢a(z.y. 2) + 9y{z. Yy, 2. 1) (6)

whcre ¢, is the potential of the source in an unbounded fluid, ¢, is the potential of
the image source over the free surface, and ¢, is the potential of a transient disturbance.
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For a unit source below the surface the potential ¢, is given by the equation

1
’+\fz'+y'+(z—h)'

L M

and for the image source over the surface the potential ¢, is given by the equation

1

ve Vzt+yt+ (z + A)? ®)
The Fourier transforms of the three potentials are given by the equationa
l +w
@ =+ 5 J' f. e ~Sin-Atalucestsyring) 4. 45 (9)
-w JO
1 24 4
Pe= - = J' J..-.(.u)»u(-uuwnn di d8 (10)
T Jow ]
+w
P = f J“‘(" 8, t) e-—s(.qm)#u(m&y-lul) x dx do (l 1)
- JO

Substitution of potentials in the free—bcundary equation shows that the Fourier
amplitude satisfies the equation

a4 g
-a—‘-i'i-gdv;—o (12)

of which the appropriate solution is

Egs\/gxt

nx (13)

1
Alx. 0, t) = e
If an instantaneous creation of a finite source is followed after a time interval d¢ by

the instantaneous annihilation of the finite source, then the Fourier amplitude per
unit pulse is merely

Alx. 8, t)s-:;\/gsin\/g—;t (14)

The potentials ¢, and ¢, are zero for the unit pulse, while the jotential ¢, is given
by the equation

=2 4 -
P = % f f Vgx sin Vgt e -s#+h+ixzcosteyain®) 40 gg (15)
-w v

Substitution of the potential in the boundary equation shows that the surface elevation
initially is a hump, but breaks ultimately into the well known system of concentric
waves.

If a unit source is created below the origin at depth h and then moves along the
z—axis at constant speed U, the potentials ¢, and ¢, are restored but with their
origins centered over the source. The potential ¢, mey be obtained through integration
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of the contributions of pulses which have been created during a succession of differential
time intervals dr fromx * =0 to 7 = (. The result at time ¢t is given by the equation

@y = '_1' J.J‘J- V,;; sin ’gx(! - 1) @ S(FeRIsla-Urioassryain®l gy gg dr (18)

After integration the potential is given by the equation

J’ \/—‘sm(\/—_wcvcosa)t
\/—+ch010

J‘f x sin ( - kU cos 8)t e ~<(x+A +a((a-Uthoustoysind] 4y 4o
* 2n Vgx - xU cos @

-x(un)ou((.-w)o«ommol dx df

a-c(.m)ouu-—mmwvuul de d8

L1 J‘J’ Vge sin*{{(Vgx + xU cos @)t
vgk +xl/cos @

L1 J'J' sm"(\/”; - xUcos H)t

- «xU cos@

-z{x+h)+ixi(z-Ut)ecs®+yeine| de d@ (17)

In the limit as { + = the first integral vanishes unless cos ¢ is negative, and the second
integral vanishes unless cos 6 is pcsitive. In either case there is no contribution to
the integration except where the denominators vanish. The substitution

U‘}ia g T (18)
and use of the equation
fi‘i::‘-‘?fdu=g (a>0) (19)
for which a is given by the equation
a = jUtinos @' (20)

converts the sum of the first two integrals into the single integral in Equation (34)
of the text. In the second two integrais the integrands are mauitiplied by the square
of a sine whicn is always positive and in the limit as { - = has the eflect of weighting
the Cauchy principal value by { The sum of the second two integrals becomes the
double integral in Equation {34) of the text Equation {!7) 1s very instructive insofar
as it demonstrates the true nature of the Cauchv principal value.
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" ALGORITHMS

integration of Series
Let a function A(f) be expressed by the equation

»
A(t) = T ayt* (1)
e
The nth integral 4™(t) is given by the definition

A®(t) = )E afMe (@
[ 2 ]

for which the coefficients are derived from the recurrence
ai? (3

The coefficients are stored in an array and ere shifted during each cycle of recurrence.
The constant of integration a{™ is replaced by a new consiant in each cycle.

Differentiation of Quotient
Let & function Q(t) be expressed by the equation

' ]
) - %%% )

The nth derivative Q™(1) is given by the definition

l{
Zat (s)

Q(')(‘) = i
{1+ ™1

for which the coetficients are derived irom the recurrence

af™ = (k - 2n)af®;" + (k + 1)a{3}" (8)

The coefficients are siored in an array and are renlaced dusing eech cycle of recurrence.

Transformation of Variable

If a dependent variable is expressed in terms of either of two independent variables
by power polynomials, then Lhe equality of the power polynomials defines implicitly
one independenti variable in terms of the other, provided the power polynomiais meet
necessary restrictions. Let P be the dependent variable and let ¢, u ba {lie independent

1
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variables. Let the variable P be given either by the equation

. »
P= ¥ apt™ ™
mey
or by the equation
L 4
. . 1
P=3 bu" (8)
asf
Equivalence of the two polynomials implies that ¢ and u are related by the equation
- :
.18 t= ¥ cut (9) H
[ - dey H
All of these polynomials are restricted to have zero constant terms. g
The mth power of ¢ is given Ly the definition 4
= a=m i
g The coefMcients c™ all are zero for n<m and the first nonzero coefficient is given
g by the equation
: i
-k e = (e)™ (11)
. E ¥
- The coefficients are generated by the recurrence 3
. a—mel z
g =T el (12)
, amy :
HE 3
? The expression for cﬁ"’ contains no coeflicient c{" of higher order than cf.’l,..l.
v The coeflicients are solutions of the equations
. : ; .
g L auct =5, (13)
F ey i
which express the equivalence of the polynomials for P. Solution of the equations is
3 achieved by an iteration which staris with all coeflicients ¢, set equal to 2ero except
: ¢;. When a, and b, both are zero, the coefficient ¢, is given by the equation
i
: ¢y = (be/ )t (14) .
; g The coefficients cf,’_, of higher order are obtained direcliy from the equalion
‘é L3
3 2ag¢,68) = 00 - T apmet™ (15) §
i mul ;
% . whence the coefficient cf.” is adjusted in accordance with the transformation "’
F 3
z H
] e+ e + 20,8, (18)
(1

When a, and b, are not zero, the coeflicients c,’ of progressively increasing order are

2
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' obtained directly from the equation
. L]
ﬂ:‘i" =b, ~ 2 Gncsc“) (17

mel

Thus the coefficients are generated by a straightforward progression. ;
The integration of a Taylor series in t is converted into an iitegration of a power !
series in u with the aid of the equations ;

a4 1 d . 1 =
— —g T (mel), o
-~ t 1= (n+1ciVu (18)

4+
=

No further multiplication by power series is required for the change of differential in
the integration. The coeflficients of the polynornials whiclk express the powers of ¢ in
terms of the powe:si of u are stored in a pair of matrices.

Airy Punction
The Airy function Ai(z) is defined by the equation
Ai(z) = ! Jf' cos(zt + §t%) dt (19)
™ Je

or by the equa‘ion i
- .

Ai(s) = — f R (20)

27 ) o w

The first derivative A1i'(z) is given by the equation
Ai(z) = -2-"; I: tet =4 44 (21)
and the second derivative A1'(z) is given by the equation
At (z) = - :1; f:: (e 3 g ‘ (22)

Addi’ion of z to t* in the integrand changes it into a function which can be integrated
in finite terms as expressed by the equation

z = 1
Ai(2) = — r .i-(l!-b,l')dt
inJ_o
< «n~§t’) bl
2n ¢

+ (23)

The integration converges if the limits of integration lie above the real axis, in which
case the Airy function is a solution of the differential equation

Ai'(z) = 241i(z) (24)

3

§ .
E
E
1




RS

- .,‘-V(...Mw..‘uwmwm
. N y

-

Let the nth derivative 4i*)(2) be expressed by the equation

Ai(g) = T alM2%i(z) + T oM 2%%i'(2) (28)

The coeflicients of progressively higher order are gencrated by the recurrence equations
af™ = (k + 1)a{3;" + piny" (28)

8™ = o> + (k + 1)003;" (27)

which are started with the single coefficient of zero order, u,‘," =1.

The expression of the Airy function in terms of Bessel functions is derived on page
188 of Watson's Theory of Bessel Functions®

The exponential function in the integrand of the Airy function can be expanded in
an absolutely convergent power series in z. If the path of integration with respect to
t is varied to pass inward toward the origin along a ray at the phase angle jn, and
outward from the origin along a ray at the phase angie in. then the coefficients of
the power series can be expressed in terms of gamma functions and can be correlated
with the ccefficients in the expansions of Bessel functions of 1maginary argument.

The Airy function is given in terms of the McDonald function by the equation

i )
z
Ai(z) = + k(322 28
(z) o i(s ) (28)
and its derivative is given by the equation

A9(2) = - ”’73 K§(§z§) (29)

Evaluation of the McDonald function is performed by reference to a subroutine®** for
the complex Bessel function.

The argument of z is in the range 0 to 2n, whereas the argument for the subroutine
is in the range —~n to +n. If the argument exceeds the range of the subroutine, then
the McDonald function is modified in such a way as to increase the argument by 2.
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WAVE PROFILE

Figure 1. Cartesian Coordinates. Position of a point P with respect to
the source S.
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Figure 2. Radial Integration with respect to Wave Number —, path of
integration; —, limit of integration.
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convergence; —, primary branch, natural path; —, secondary branch,
natural path; --—, actual path of integration.
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